If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+8k+1=0
a = 3; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·3·1
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{13}}{2*3}=\frac{-8-2\sqrt{13}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{13}}{2*3}=\frac{-8+2\sqrt{13}}{6} $
| 6+k=105 | | x-0.3x=100000 | | 6v−3v−3=12 | | 3.3t=11.55 | | 2(u-3)-5u=21 | | 28=7y-4+y-5 | | 20=0.5x+6 | | -2.2+w/6=-21.4 | | -3/5(4a-1)=27 | | 1x+5/2=10 | | 8x+34=3(x-5)-x | | 3x+47+27+x=10 | | 8/x-9=6/x-8 | | 6(x+5)-8x=32 | | n+5=7/12 | | 66-v=174 | | 8=2(x-3)-4x | | 4.4+10m=7.98 | | 225/t=3-1.25t | | 3x+47+10+27+x=x+26 | | 31/5*4/31=x | | -3a+9=-6a+24 | | 31/5x4/31=x | | 7m-3m4=16 | | 2^x=138 | | n=5.75+(-5) | | 6+6=-4(4x-3) | | 12V5x-6=4V5x+12 | | 5x/2-8=2x/7-6 | | 6x+-2x=48+2x+-2x | | -(1+7x)-6(-7-x)=36 | | -10p-5(6-3p)=3(p-5)-13 |